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by Israelachvili et al. (2, 3) and Pashley (4, 5), who examined
We demonstrate that the hydration repulsion between smooth the validity of DLVO theory at small film thicknesses in experi-

charged surfaces can be attributed to the interplay of two effects ments with films from aqueous electrolyte solutions confined
which are not taken into account in the conventional DLVO the- between two mica surfaces. At electrolyte concentrations below
ory. These are the finite size of the counterions and the variable

1004 M (KNO3 or KCl) they observed the typical DLVOdielectric permittivity across the electric double layers. We involve
maximum. However, at electrolyte concentrations higher thanthese two effects in the theory by coupling the Poisson–Boltzmann
1003 M they did not observe the expected DLVO maximumequation with the Bikerman and Booth equations. The resulting
and primary minimum; instead a strong short-range repulsionnonlinear ordinary differential equation of second order is solved
was detected, see also Ref. (6). Empirically, this force callednumerically. The theory is applied to interpret available experi-

mental data for the dependence of the surface force on the distance the ‘‘hydration repulsion’’ appears to follow an exponential
measured by means of the surface force apparatus. Excellent law (6)
agreement between theory and experiment is obtained with reason-
able values of the two adjustable parameters: the area per surface fhydr (h) Å f0e

0h /l0 , [1.1]
charge and the counterion adsorption energy. It turns out that the
contribution of the ionic-excluded volume to the hydration force

where the decay length l 0 É 0.6–1.1 nm for 1:1 electrolytesis several times greater than the contribution due to the dielectric
and f0 depends on the hydration of the surfaces but is usuallysaturation. The developed theoretical approach can find applica-
in the range of 3–30 mJ/m2.tion for interpreting data about the interactions in aqueous thin

films, colloidal dispersions, and micellar surfactant solutions in The physical importance of the hydration force is that it
the presence of electrolyte at ionic strengths above 1 mM. q 1996 stabilizes some dispersions preventing coagulation in the
Academic Press, Inc. primary DLVO minimum. It is believed that the hydration

Key Words: counterion adsorption; dielectric saturation; hydra- force is connected with the binding of strongly hydrated
tion energy of ions; hydration repulsion; surface force apparatus; ions at the interface. This is probably the explanation of the
volume exclusion effect for ions. experimental results of Healy et al. (7) , who found that even

high electrolyte concentrations cannot cause coagulation of
amphoteric latex particles due to binding of strongly hy-

1. INTRODUCTION drated Li/ ions at the particle surfaces. If the Li/ ions are
replaced by weakly hydrated Cs/ ions, the hydration repul-

In their review on hydration forces Israelachvili and Wenner-
sion becomes negligible compared with the van der Waals

ström (1) note that hydration forces are now routinely invoked
attraction and the particles coagulate as predicted by the

to explain any unexpected repulsion and/or swelling of col-
DLVO theory.

loids, clays, soap films, and amphiphilic structures in water. It
For the time being there is no generally accepted theory

turns out that effects of different physical origin are termed
of the repulsive hydration forces. The first quantitative the-

‘‘hydration forces’’ in the literature. That is the reason why
ory by Marčelja and Radič (8) attributes the hydration repul-

from the very beginning we specify that in the present study
sion to the water structuring in a vicinity of a surface, which

we deal with the short-range monotonic hydration repulsion
leads to the appearance of a decaying polarization profile.

which appears between two molecularly smooth charged sur-
This model was further developed by other authors (9, 10).

faces across an electrolyte solution. Such forces were measured
A different approach was proposed by Jönsson and Wenners-
tröm (11), who developed an explicit electrostatic model

1 To whom correspondence should be addressed. based on the image charge concept. Leikin and Kornyshev
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240 PAUNOV ET AL.

(12) combined the main features of the solvent polarization a. Effect of the Dielectric Saturation
(8) and image charge (11) models in a nonlocal electrostatic

In general, the dielectric permittivity, 1, is a function oftheory of the repulsion between electroneutral lipid bilayers.
the electric field strength, E Å 0dc /dx . Following Gur etOn the other hand, Israelachvili and Wennerström (1) dem-
al. (19) and Basu and Sharma (16) we will use the expres-onstrated that the short-range repulsion between lipid mem-
sion for 1(E) taken from Booth (20)branes may also be a manifestation of undulation, peristaltic,

and protrusion forces, which are due to thermally excited
fluctuations at the interfaces.

1(E) Å n 2 / (1b 0 n 2)
3
bE Scoth bE 0 1

bED , [2.2]
In the case of charged surfaces, which are the subject of

the present work, Henderson and Losada-Cassou (13, 14)
pointed out that the physical origin of the hydration repulsion where n Å 1.33 is the refraction index of water, 1b is the
can be attributed to the presence of a layer of lower dielectric bulk dielectric constant (for E Å 0),
constant, 1, in a vicinity of the interface. These authors
considered the effects of the finite size of both ions and
solvent molecules in the framework of the Percus–Yevick b å 5m

2kT
(n 2 / 2), [2.3]

closure for hard spheres. It was demonstrated that the DLVO
theory complemented with such a layer predicts correctly
the dependence of hydration repulsion on the electrolyte and m Å 1.85 1 10018 (CGSE units) is the dipole moment
concentration (15). A further extension of this approach was of the water molecule; k is the Boltzmann constant and T is
given by Basu and Sharma (16), who incorporated the effect the temperature.
of the variation of 1 in the theory of electrostatic disjoining In our study we have neglected the effect due to the finite
pressure. Their model provides quantitative agreement with size of the solvent molecules, considering them as a dielec-
the experimental data at low electrolyte concentration and tric continuum. This is a common assumption used with
pH, and qualitative agreement at higher electrolyte concen- the Poisson–Boltzmann equation but here the effect of the
tration and pH. solvent polarization is also taken into account through the

The aim of the present article is to demonstrate that if the Booth equation [2.2] .
theory of Basu and Sharma (16) is further extended by
taking into account the finite size of the ions, then quantita- b. Hydration Energy of the Ions
tive agreement between theory and experiment can be

Following Gur et al. (19) we express the excess freeachieved even for comparatively high electrolyte concentra-
energy of hydration of an ion (of the i th species) by meanstions and pH.
of the Born (21) formulaIn the next section we review the basic equations for the

electric potential in a thin film, accounting also for the effects
of the ionic-excluded volume and the dielectric saturation.

Wi Å
Z 2

i e 2

2ri
S 1
1(E)

0 1
1b
D , [2.4]Further we consider the expressions for calculating the hy-

dration repulsion contribution to the disjoining pressure and
surface free energy. Next we compare the theoretical predic-

where Zi is the valence of the i th ion and ri is its radius; etions with available experimental data (4, 5, 17, 18) for the
is the elementary electric charge. Then the dimensionlesshydration force measured by the surface force apparatus.
potential energy of the i th ion in the electric double layerFinally we discuss the dependence of the hydration repulsion
can be expressed in the form (19)on the electrolyte concentration and the relative contribu-

tions of the effects of volume exclusion and dielectric satura-
tion. Ui Å 0

Zi ec / Wi

kT
. [2.5]

2. BASIC EQUATIONS

In fact, Ui is to be substituted in the Boltzmann equation inWe consider the case of planar geometry. The Poisson
order for the ionic distribution to be calculated, see below.equation has the form

c. Volume Exclusion Effect Due to the Ionsd

dz S1 dc

dz D Å 04pr(z) , [2.1]
Since the concentration of the counterions is high in the

vicinity of a charged interface, the ionic volume exclusion
effect becomes important. We take into account this effectwhere the z axis is perpendicular to the interface(s) , c(z) is

the electric potential, and r(z) is the electric charge density. by using the Bikerman equation, see Refs. (22) and (23):
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241HYDRATION REPULSION BETWEEN CHARGED SURFACES

x å exp(0kz) , w å ec / (kT ) , [2.10]
ni (z) Å 1 0 £ (k nk(z)

1 0 £ (k nk0

ni 0exp Ui . [2.6]

where

Here ni is the number density of the i th ion in the double
layer, ni 0 is the value of ni in the bulk solution where Ui Å k Å F4pe 2

1kT
∑

i

Z 2
i ni 0G1/2

[2.11]
0, the summation is carried out over all ionic species; £ has
the meaning of average excluded volume per ion. It turns
out that £ is about eight times the volume of the hydrated is the reverse Debye screening length. The introduction of
counterion. The derivation of Bikerman equation [2.6] is the variable x provides an appropriate mapping of the subsur-
based on the approximate ‘‘free volume’’ approach; see Ap- face region (z r 0), where the potential w(z) exhibits fast
pendix I where the meaning and the value of the parameter variation; this allows one to use an equidistant set of nodes
£ are also discussed. Equation [2.6] is expected to give with respect to x when solving the problem numerically.
correct results for not too high electrolyte concentrations. It By using Eq. [2.10] one can represent the Poisson equa-
is convenient to introduce the notation tion, Eq. [2.1] , in the form

d 2w

dx 2 Å f ( x , w, w*) , w* å dw

dx
, [2.12]n*i Å

ni 0

1 0 £ (k nk0

. [2.7]

whereUsing Eqs. [2.6] and [2.7] one can derive

f ( x , w, w*) Å 0 4per

1 / E(d1 /dE)
1

kTk 2x 2 0
1
x
w* [2.13]

ni Å
n*i exp Ui

1 / £ (k n*k exp Uk

. [2.8]

and

Further, one can express the charge density in the form
E Å kTkxw* /e . [2.14]

The boundary condition on the midplane of the film readsr Å (i Zi en*i exp Ui

1 / £ (i n*i exp Ui

. [2.9]

w*ÉxÅxm
Å 0, [2.15]

Note that Zi is defined with its algebraic sign: Zi is positive
for cations and negative for anions. where xm denotes the value of x in the midplane of the film.

The boundary condition on the film surface can be imposed
d. Boundary Conditions and Computational Procedure in three alternative ways:

( i) regime of constant surface potential, ws :
The set of Eqs. [2.1] , [2.2] , [2.5] , and [2.9] allows one

to determine the electrical potential, c(z) , and the distribu-
wÉxÅ1 Å ws Å const; [2.16]tions of the ionic species, ni (z) . The inclusion of the effects

of variable 1 and ionic volume in the theory makes impossi-
( ii ) regime of constant surface charge density, ssble to find an explicit analytical solution. Therefore, we use

numerical solution of the problem. It is interesting to note
that the effect of finite ionic size improves the stability of dw

dx Z
xÅ1

Å 4pess

k1skT
Å const (1s å 1ÉxÅ1) ; [2.17]

the numerical procedure: some computational difficulties en-
countered when solving the Poisson–Boltzmann equation
for point ions do not appear. The latter difficulties are related (iii ) regime of surface charge regulation (see e.g., Ref.
to the unrealistically high subsurface ionic concentration ob- (24))
tained often for point ions. Moreover, the solution is always
unique; we do not obtain double solution for the film mid- dw

dx Z
xÅ1

Å 4pe 2ZsGs

1kTk(1 / (n1sd1 /Gs )exp(F /kT ))
, [2.18]

point potential as reported in Ref. (16) for point ions. The
procedure of calculation we used is the following.

After Gur et al. (19) we introduce the dimensionless vari- where d1 is the diameter of the counterions, n1s is their sub-
surface concentration,ables
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242 PAUNOV ET AL.

fel (h) Å *
hN

h

Pel (h)dh / 1
k
Pel (hN)e0k(h0hN ) . [3.5]n1s Å

n*
1 exp U1

1 / £ (k n*k exp Uk

Z
xÅ1

[2.19]

The disjoining pressure due to hydration repulsion can be
cf. Eq. [2.8] . To obtain Eq. [2.18] we used the Stern iso- defined as
therm; Gs is the number density of the surface ionizable
groups, which play the role of adsorption centers for the Phr (h) Å Pel (h) 0 P (0)

el (h) , [3.6]
counterions, and Zs (Zs Å {1) denotes the sign of the surface
charge. The solution of the problem gives w Å w(x) and, in where P (0)

el (h) is the electrostatic disjoining pressure pro-
particular, the value wm å w(xm) in the midplane of the film. vided by the conventional DLVO theory. To calculate
The numerical method is described in Appendix II. P (0)

el one may use the Langmuir formula (27)

3. ELECTROSTATIC AND HYDRATION P (0)
el Å kTF∑

k

nk0exp(0Zkw
(0)
m ) 0 ∑

k

nk0G , [3.7]
SURFACE FORCES

After Verwey and Overbeek (25), and Basu and Sharma which follows from Eqs. [2.7] and [3.2] for £ r 0 and
(16) we use the expression wm r w (0)

m . Here w (0)
m is the potential in the midplane calcu-

lated with £ Å 0 and 1 Å 1b . Note that the effects of both
ionic size and variable 1 lead to ÉwmÉú Éw (0)

m É. This contri-Pel Å 0*
cm

0

rm(cm)dcm Å 0
kT

e *
wm

0

rm(wm)dw [3.1]
butes to a positive Phr in Eq. [3.6] .

4. NUMERICAL RESULTS AND DISCUSSIONto calculate the electrostatic component of disjoining pres-
sure, Pel ; here rm is the value of the charge density, r, in

The hydration repulsion between two crossed cylinders ofthe midplane of the film.
radius R was measured across electrolyte solutions by meansSince E Å 0 in the midplane, rm is defined by Eq. [2.9]
of the surface force apparatus (1–5, 17, 18). The experimentwith Ui Å 0Ziwm. Then the integration in Eq. [3.1] can be
gives the quantity F /R , where F denotes force. On the othercarried out to give
hand, the Derjaguin approximation (26) yields F /R Å 2pf ,
where f Å f (h) is the surface excess free energy. Theoreti-
cally, f can be expressed in the formPel Å

kT
£

lnF1 / £ (k n*k exp(0Zkwm)

1 / £ (k n*k
G . [3.2]

f (h) Å fel (h) / f
£w(h), f

£w(h) Å 0 AH

12ph 2 , [4.1]
The ionic volume exclusion effect enters Eq. [3.2] both

explicitly (through £ and n*k , cf. Eq. [2.7]) and implicitly
where fel is given by Eq. [3.5]; we use the value AH Å 2.2(through wm, which is calculated by means of the procedure
1 10020 J for the compound Hamaker constant of an aqueousdescribed in the previous section). The effect of the variable
film between two mica surfaces (6) . In view of Eqs. [3.5]dielectric constant 1(E) affects Eq. [3.2] only implicitly,
and [3.6] , fel (h) accounts for both hydration and DLVOthrough wm. Note also that wm depends on the film thickness,
electrostatic repulsion. Note that the effect of the finite sizeh , and consequently, Eq. [3.2] determines the function
of the solvent molecules leads to oscillations superimposedPel (h) . The excess free energy per unit area due to the
over the monotonic hydration repulsion. These oscillationselectrostatic interactions across the film is (26)
are often considered as a separate oscillatory structural sur-
face force (6, 29), which is not a subject of the present

fel Å *
`

h

Pel (h)dh [3.3] study. Below we compare available experimental data with
the predictions of the theory presented in Sections 2 and 3
above. As boundary condition at the film surfaces we use

For kh @ 1 the effects of both volume exclusion and variable
the condition for charge regulation, Eq. [2.18].

1 become negligible and Pel decays exponentially,
The theory contains three parameters: £, a å 1/Gs , and

F, see Eqs. [2.6] and [2.18]. On the basis of the analysis
Pel (h) Å Pel (hN)e0k(h0hN ) , h § hN (khN @ 1) [3.4] given in Appendix I we fix the excluded volume £ to be

equal to 8 times the volume of a hydrated counterion; we
used the value 0.33 nm for the radius of K/ ion and 0.36The latter asymptotic expression can be utilized to make the

integration domain in Eq. [3.3] finite: for the radius of Na/ ion (6) . The other two parameters, viz.
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243HYDRATION REPULSION BETWEEN CHARGED SURFACES

FIG. 1. Plot of surface free energy, f , vs film thickness, h . The points
FIG. 2. Plot of f vs h . The points are experimental data from Fig. 8are experimental data from Fig. 3 in Ref. (5) measured with solution of 1

in Ref. (4) measured with solution of 2.3 1 1003 M KCl/KOH at pH 11.11 1003 KCl M at pH 5.7 between mica surfaces. The full line is the best
between mica surfaces. The full line is the best fit corresponding to F Åfit corresponding to F Å 5.9 kT . The area per surface charge is fixed to a
5.6 kT . The area per surface charge is fixed to a Å 0.48 nm2.Å 0.48 nm2.

the area per surface charge, a , and the energy of adsorption Figure 4 also shows data for Na/ counterions (taken from
(binding) per counterion, F, are treated as adjustable param- Horn et al., Ref. (17)) , but this time the salt concentration
eters; we determine the value of a and F from the best fit is higher, 0.11 M NaCl, and the film is formed between silica
of the data by the least-squares method. In the case of mica (instead of mica) sheets. The data are more scattered as
the value of a is known, and in this specific case we treat compared with Figs. 1–3, but nevertheless there is a good
only F as an adjustable parameter (see below). agreement between theory and experiment. Since the electro-

Figures 1–5 represent the comparison between our theory lyte concentration is higher, one may expect that some effect
( the solid curves) with the experimental data of other authors of the ionic correlation surface force could appear. For that
for the surface force. The dashed curves give the predictions reason we employed the theory in Ref. (28) to calculate the
of the conventional DLVO theory (26) for the same values contribution of the ionic correlations. As seen in Fig. 4 the
of the parameters. curves calculated with and without accounting for the ionic

In Fig. 1 we compare the theory with the experimental correlations almost coincide; i.e., the effect of the ionic cor-
data by Pashley (5) for 1 1 1003 M KCl solution at pH 5.7. relations is negligible even for this relatively high salt con-
The film is formed between two molecularly smooth mica
surfaces. Since the area per surface ionizable group for mica
is known (see e.g., Ref. (30)) we fixed a Å 0.48 nm2 and
the data were fitted by varying only the adsorption energy,
F, of the K/ ions. Excellent agreement between theory and
experiment is observed. From the best fit we determine the
energy of adsorption of a K/ ion to be F Å 5.9 kT .

In Fig. 2 we present a similar plot, but for higher electro-
lyte concentration: 2.3 1 1003 M KCl/KOH at pH 11.1.
The data is taken from Ref. (4) . The area per surface ioniz-
able group is again a Å 0.48 nm2; the calculated value of
the adsorption energy of a K/ ion, F Å 5.6 kT , is almost
the same as in Fig. 1.

The fact that the best fit gives close values of the adsorp-
tion energy F per K/ ion for two different sets of data, Figs.
1 and 2, is an argument in favor of the physical adequacy
of our theoretical model.

Figure 3 shows data of Pashley (4) for Na/ counterions
FIG. 3. Plot of f vs h . The points are experimental data from Fig. 4

( instead of K/) . The film is formed again between mica in Ref. (4) measured with solution of 5 1 1003 M NaCl at pH 6.3 between
surfaces. The full line in Fig. 3 represents the best fit corre- mica surfaces. The line is the best fit corresponding to F Å 3.5 kT . The

area per surface charge is fixed to a Å 0.48 nm2.sponding to adsorption energy per Na/ ion F Å 3.5 kT .
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244 PAUNOV ET AL.

FIG. 4. Plot of f vs h . The points are experimental data from Fig. 2 FIG. 6. Theoretical plot of F /R Å 2pf vs h for various concentrations
of KCl denoted on the curves. All curves are drawn for the same valuesin Ref. (17) measured with solution of 0.11 M NaCl at pH 5.7 between

silica surfaces. The full line is the best fit corresponding to a Å 0.52 nm2 of the surface potential cs Å 0128.4 mV, excluded volume of K/ ion £ Å
1.2 1 10027 m3 and T Å 298 K.and F Å 5.6 kT ; the short-dashed line accounts for the contribution of the

ionic correlation surface forces.

surfaces: deposited monolayers of dihexadecyl phosphate
(DHP). The data are taken from Claesson et al. (18). Thecentration (this would not be the case if a 2:2 electrolyte

was present, see Ref. (28)) . Since the surface structure is solution contains 1 1 1002 M NaCl at pH 9.5. At this value
of pH one may expect that DHP (initially in acidic form) isnot well defined and depends on the prehistory of the silica

sheets (formation of gel layer of hydrolyzed silica acid) , highly dissociated. This expectation is consonant with the
relatively small area per surface charge, a Å 0.455 nm2,we use both a and F as adjustable parameters. The calculated

area per surface charge of the silica sheet, a Å 0.52 nm2, obtained from the best fit. In addition, the calculated higher
value of the adsorption energy per Na/ ion, F Å 8.6 kT ,turns out to be larger than the value of a for mica sheets,

cf. Figs. 1–3. In addition, the calculated adsorption energy evidences that the Na/ ions bind stronger to the DHP layers
than to the mica or silica sheets, cf. Figs. 3 and 4.of a Na/ ion on silica, F Å 5.6 kT , is somewhat larger

compared to the calculated value for mica (F Å 3.5 kT , cf. In Fig. 6 we investigate the dependence of hydration repul-
sion on the concentration of electrolyte (KCl). All theoreticalFig. 3) .

Figure 5 presents similar data, but for another type of film curves are calculated for £ Å 1.2 1 10027 m3, AH Å 2.2 1
10020 J, and cs Å 0128.4 mV; the boundary conditions for
constant potential, Eq. [2.16], was used. We plot F/R Å 2pf
vs h . The theoretical curves in Fig. 6 resemble very much
the experimental findings, see, e.g., Fig. 13.9 in Ref. (6). In
particular, for Cel Å 5 1 1005 and 1004 M a typical DLVO
maximum is observed, without any indication about the exis-
tence of short-range repulsion. However, for Cel Å 1003, 1002 ,
and 1001 M maximum is not seen but instead, the short-range
hydration repulsion appears. Note that the increased electrolyte
concentration increases the hydration repulsion, but suppresses
the long-range double-layer repulsion, as it is known from
previous studies. Note also that the experimentally observed
oscillations superimposed on the monotonic F/R vs h curves
can be reproduced if a term accounting for the oscillatory
structural component of f is added on the right-hand side of
Eq. [4.1], see, e.g., Ref. (29).

In Fig. 7 we present theoretical plots of Phr vs h calculated
FIG. 5. Plot of f vs h . The points are experimental data from Fig. 1

by means of Eq. [3.6] . Our aim is to examine the effect ofin Ref. (18) measured with solution of 1 1 1002 M NaCl at pH 5.7 between
the ionic size on the hydration repulsion. For that reason wetwo deposited monolayers of dihexadecyl phosphate. The full line is the

best fit corresponding to a Å 0.455 nm2 and F Å 8.6 kT . vary the excluded volume £ (which as before is taken to be
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245HYDRATION REPULSION BETWEEN CHARGED SURFACES

equal to 8 times the volume of the counterion, see Appendix
I) at fixed values a Å 0.8 nm2, F Å 6 kT , and ionic strength
I Å 0.01 M . To calculate £ we used the values 0.33, 0.38,
and 0.43 nm for the ionic radii of the hydrated K/ , Li/ ,
and Mg2/ , respectively (6) . One observes a marked increase
of Phr with the increase of the counterion size. The lower
curve is calculated with £ Å 0; i.e., for this curve the value
of Phr is determined only by the effect of dielectric satura-
tion. This fact explains why we obtained an excellent agree-
ment between theory and experiment despite the approxi-
mate character of Booth equation, Eq. [2.2] , accounting for
the effect of dielectric saturation. Indeed, the Booth equation
is not accurate enough for small field strengths (19). How-
ever, the small relative contribution of the dielectric satura-
tion to Phr (Fig. 7) implies that the correction of the Booth
equation for small field strengths (16) is not so essential for
the calculation of hydration repulsion.

The contour-plot diagram in Fig. 8 illustrates the range
of electrolyte concentrations (1:1, electrolyte) and film FIG. 8. Contour-plot diagram of the relative effect of hydration repul-

sion, Phr /PDLVO
el , vs the electrolyte concentration, cel , and the dimensionlessthicknesses for which the effect of hydration repulsion is

film thickness, kh . The values of the parameters are £ Å 1.2 1 10027 m3,important. The values of the parameters are £ Å 1.2 1 10027

a Å 0.46 nm2, and F Å 4.8 kT . The contours correspond to fixed valuesm3, a Å 0.46 nm2, and F Å 4.8 kT . Note that the larger the
of Phr /PDLVO

el denoted in the figure.
electrolyte concentration, the larger the effect of hydration
repulsion.

It should be noted that in case of low pH the hydrated 5. CONCLUDING REMARKS
ions can be competed by H/ ions for the adsorption sites at
the film surfaces (see, e.g., Ref. (30)) . Then, the boundary In the present study we demonstrate that the hydration

repulsion between smooth charged surfaces can be attributedcondition, Eq. [2.18], should be extended to account for the
competitive adsorption of H/ and the hydrated metal ion. to the interplay of two effects (not taken into account in

the conventional DLVO theory): ( i ) the finite size of theHowever, it is observed experimentally (6) that in this case
the effect of hydration repulsion disappears which can be counterions and (ii) variable dielectric permittivity.

The finite size of the counterions (the volume exclusionattributed to the decrease in the subsurface concentration of
the hydrated metal ions. effect) is involved in the theory through the expression for

the bulk charge density, Eq. [2.9] , which is to be substituted
in the Poisson equation, Eq. [2.1] . The volume exclusion
effect is characterized by the Bikerman parameter £, which
is approximately equal to 8 times the volume of the hydrated
counterion, see Appendix I.

The effect of the variable dielectric permittivity, 1(E) ,
called also the dielectric saturation effect, is accounted for
in the same way as in the earlier works by Gur et al. (19)
and Basu and Sharma (16), see Eq. [2.2] . Note that 1(E)
enters the theory through the Poisson equation, Eq. [2.1] , as
well as through the ionic hydration energy in the Boltzmann
equation, Eqs. [2.4] , [2.5] , and [2.9] .

The resulting nonlinear ordinary differential equation of
the second order is solved numerically. Accounting for the
volume exclusion effect (£ ú 0) the numerical procedure
becomes more stable and faster, and moreover, double solu-
tions like those obtained by Basu and Sharma (16) do not

FIG. 7. Theoretical dependence of the hydration component of dis- appear.
joining pressure, Phr , on the film thickness, h , for various values of the

The numerical procedure yields the value of the electricexcluded volume £; we use the values £ Å 2.66 1 10027 m3 for Mg2/ , £
potential in the midplane of the film, wm, which is then usedÅ 1.84 1 10027 m3 for Li/ , and £ Å 1.2 1 10027 m3 for K/ ; the lower

curve is calculated with £ Å 0. to calculate the total electrostatic disjoining pressure, Pel ,
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by means of Eq. [3.2] . Pel can be considered as a sum of The last equation is to be compared with the virial expansion
(31, 32)DLVO and hydration contributions, cf. Eq. [3.6] .

The theory is applied to interpret available experimental
data (4, 5, 17, 18) for the surface free energy f vs the film

F Å Fid /
kT

V
∑
i , j

Ni NjBij(T ) / rrr , [A.4]thickness h . Two adjustable parameters are used to fit the
data: the area per surface charge, a , and the adsorption en-
ergy of a counterion, F. In the case of mica the value of a

where Bij are the second virial coefficients accounting foris known, and in this specific case we treat only F as an
the two-particle interactions,adjustable parameter. The theory provides an excellent fit

with reasonable values of a and F, see Figs. 1–5. The predic-
tions of the theory are consonant with the experimental find-

Bij Å Bji Å 2p *
`

0

dr r 2F1 0 expS0 Uij(r)
kT DG , [A.5]ing that the hydration repulsion is significant only for the

higher electrolyte concentrations, Cel § 1 mM , see Fig. 6.
The numerical test of the theory (Fig. 7) shows that the

where Uij(r) is the pair interaction energy between particlescontribution of the volume exclusion to the hydration force
of the i th and j th species. If rij is the center-to-center distanceis several times greater than the contribution due to dielectric
at closest approach between two particles of the respectivesaturation.
species, one can writeThe theoretical approach developed in this study can find

application for interpreting experimental data for the interac-
tions in aqueous thin films, colloidal dispersions, and micel-

Bij Å bij 0
cij

kT
, cij å 02p *

`

rij

S1 0 expS0 Uij

kTDDr 2drlar surfactant solutions in the presence of electrolyte at ionic
strengths above 1 mM .

bij å 2p *
rij

0
S1 0 expS0 Uij

kTDDr 2dr É 2p
3

r 3
ij . [A.6]APPENDIX I

On the Derivation of the Bikerman Equation Finally, from Eqs. [A.3] – [A.6] one derives

In statistical mechanics the volume exclusion effect can
be taken into account by substituting the volume of the sys- b Å ∑

i , j

xi xjbij , c Å ∑
i , j

xi xjcij , [A.7]
tem, V, with the so called ‘‘free volume,’’

where xi Å Ni /N are molar fractions.Vf Å V 0 Nb , N Å ∑
i

Ni , [A.1]
In the case of ionic solution, Ni is number of ions of the

i th species, and N stands for the total number of ions.
For the sake of simplicity below we assume that all mole-in the partition function, see, e.g., Ref. (31). Here Ni is

cules have approximately the same size, that is, bij É b fornumber density of molecules of the i th species and b is
all i and j . Then Eq. [A.7] yieldsan effective average volume occupied by a molecule. In a

multicomponent system b depends on the composition. The
b Å const. [A.8]latter dependence can be estimated in the following way.

The use of Eq. [A.1] leads to the following expression
for the free energy of a system of interacting molecules In the system of hard spheres (c Å 0) from Eqs. [A.1] ,

[A.2] , and [A.8] one derives

F Å Fid 0 NkT lnS1 0 Nb

V D 0 N 2c

V
, [A.2]

mi Å S ÌF

ÌNi
D

T ,V ,Nk

where Fid is the free energy of an ideal gas; b and c account
for the hard core and long-range interactions, respectively,

Å m0
i / kTF ln

ni

1 0 nb
/ nb

1 0 nbG , [A.9]cf. Refs. (31) and (32). In the limit of low concentrations
Eq. [A.2] reduces to

where mi is chemical potential, m0
i is standard chemical po-

tential, and n Å N /V . For low particle volume fraction oneF Å Fid /
N 2

V
(bkT 0 c) . [A.3]

can write
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where wn Å (xn) , xn Å x1 / (n 0 1)Dx , n Å 1, 2, 3, . . . ,nb

1 0 nb
É lnS1 / nb

1 0 nbD Å ln
1

1 0 nb
. [A.10] N ; xN Å 1; x1 Å 0 for double layer or x1 Å xm for thin film,

see Fig. 1. Combining Eqs. [B.2] and [B.3] we obtain the
following expression in terms of finite differences

A combination of Eqs. [A.9] and [A.10] yields

anwn01 / bnwn / cnwn/1 Å dn ,

mi Å m0
i / kT ln

ni

(1 0 nb)2 É m0
i / kT ln

ni

1 0 2nb
. (n Å 2, . . . , N 0 1), [B.4]

[A.11] where

Finally, setting equal the electrochemical potentials,
an Å cn Å 1, bn Å 0(2 / f *wDx 2) , [B.5]

dn Å [ f 0 wn f *w]Dx 2; wn å w(xn) . [B.6]mI i Å m0
i / kT ln

ni

1 0 2nb
/ Zi ec / Wi [A.12]

We include three options for the three boundary conditions
of the ions in the bulk (c å 0) and in the double layer, one at the charged wall. In regime of fixed surface potential from
obtains Eq. [2.6] with £ Å 2b . In a first approximation Eq. [2.16] we obtain
the concentration of the coions in the double layer can be
neglected. Then in accordance with Eq. [A.7] £ can be esti- aN Å cN Å 0, bN Å 1, dN Å ws ( fixed potential) . [B.7]
mated as

The cases of fixed charge and charge regulation can be
£ É 2b Å 2 ∑

i , j

xi xjbij , [A.13]
treated in a similar manner. Both Eqs. [2.17] and [2.18]
may be expressed in the form

where xi is the fraction of the i th counterion normalized with
respect to the total number of counterions. The parameters bij w *s Å g(ws , w *s ) ; w *s å w *s ÉxÅ1 , [B.8]
can be estimated from Eq. [A.6]. Thus for a single counter-
ion in solution one has x1 Å 1 and £ is equal to 8 times the

where g(ws , w *s ) is a known function. By using the lineariza-volume of the hard core.
tion

APPENDIX II
w *s Å g(ws , w*s ) / (ws 0 ws )g *ws

/ rrr [B.9]
Numerical Method for Solving the Generalized

Poisson–Boltzmann Problem in terms of finite differences we get

Our purpose is to solve the equation
aNwN01 / bNwN Å dN , [B.10]

w9 Å f ( x , w, w*) , [B.1]

where
where f is a known function determined by Eqs. [2.2] ,
[2.4] , [2.6] , [2.9] , and [2.13]. We will utilize a partial

aN Å 2, bN Å 0(2 / f *wDx 2) / 2g *ws
Dx , [B.11]

linearization of Eq. [B.1] by means of the Newton method.
Let w(x) be a known trial function for the solution w(x) . dN Å ( f 0 wN f *w)Dx 2 0 2(g 0 wNg *ws

)Dx . [B.12]
Then we expand the right-hand side of Eq. [B.1] in series
for w r w

In the case of fixed surface charge from Eq. [2.7] one derives

w9 Å f ( x , w , w*) / (w 0 w) f *w / rrr , [B.2]

g Å 4pess

k1(w *s )kT
, g*ws

Å 0. [B.13]
where f *w å (Ì f /Ìw)ÉwÅw . Next, we express w9 by means
of central differences

In the case of charge regulation from Eq. [2.18] one like-
wise obtainsw9 Å (wn/1 0 2wn / wn01) /Dx 2 / O(Dx 2) , [B.3]
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